1.
CURRENT STATUS

We expanded our previous XML query proposal to include all of the query-related nodes that we currently use, both for formulation of the query and for the returned query results. We added those items that we understood were needed by our SPIN collaborators. We retained the general format of our previous proposal, but have added support for expressions, additional data elements, and the ability to returning patient level data (a sample of which are now being provided by the Boston Spin system. Many of the expression and condition tag names, and much of that XML format, were inspired by the W3C “MathML” project at http://www.w3.org/Math/. MathML defines a format for expressing mathematical content in XML so for the mathematical parts of the SPIN syntax we stayed very close to MathML.

The XML schema file for the query schema syntax is attached to this email and has been submitted to the SPIN web site.

2.0
CONVENTIONS

For clarity and brevity, we have not included the XML <query> and </query> tags in the examples within the main body of this document. We have also omitted the <identity> and <evaluationSettings> nodes from those examples.

For readability and consistency, our tag names are in “camel case” format. For example, the tag <startsWith> has a capital “W” to designate the beginning of the second word.

We have not included any XML namespace identifiers in our examples. Nothing in the schema precludes the use of name space identifiers and we believe we should include them in the final product.

Our XML Schema uses a “composition” design strategy for defining and extending XML data types. Refer to the web site http://ww.xfront.com/composition-versus-subclassing.html for a description of the composition XML schema design strategy and of how it is easily married with XSL-driven applications. Composition makes it possible to add new functions, operators, and/or conjunctions without tearing apart the entire schema. For example, we have defined an “abstract” XML element named “conjunction”. All logical expressions are defined using that “conjunction” element reference. The XML elements “and” and “or” have been defined as concrete elements which are substitutable everywhere “conjunction” appears in the schema. The “and” and “or” elements do not themselves appear anywhere else. Thus, we can add another conjunction, like “xor”; by simply defining the new conjunction element as substitutable for the same abstract “conjunction” element and “xor” will become available throughout our schema.

Composition also makes it possible to locally “extend” portions of the query schema without affecting anyone else.

3.0
OVERVIEW OF QUERY XML FORMAT

The entire query definition is contained within the query node. Its overall structure is:

<query>

<identity>…</identity>

<evaluationSettings>…</evaluationSettings>

<conditions>…</conditions>

<returnStatistics>…</returnStatistics>

<returnData>…</returnData>

</query>

The identity node documents who and when the query was created and evaluated. The evaluationSettings node can contain global parameter settings that affect overall query evaluation. The conditions node specifies the query search conditions; that is, what we are looking for. The results of the query evaluation are returned in the returnStatistics and/or the returnData node, as requested.

3.1
identity

The identity node defines by whom and when the query was initiated and, optionally, who and when it was replied to. Its contents are purely for bookkeeping and debugging purposes.

3.2
evaluationSettings

The evaluationSettings node defines global query execution parameter settings. We do not currently have any such parameter settings, but have anticipated that need.

3.3
conditions

The conditions node defines the criteria for identifying the data of interest. It may contain a single condition or a tree of logically connected condition nodes. Section 4.1 shows a query with a single condition. Its basic structure is:

<conditions>

<condition>…</condition>

</conditions>

Section 4.2 contains a sample query with multiple condition nodes. Consider one very simple example. Suppose we named our conditions “A”, “B”, and “C” and wanted to represent the logic “If A and (B or C)”. Our conditions node would be structured as follows:

<conditions>

<AND>

<condition name=”A”>…</condition>

<OR>

<condition name=”B”>…</condition>

<condition name=”C”>…</condition>

</OR>

</AND>

</conditions>

3.3.1
condition

The condition node is the “heart” of the XML query syntax. It is required in each conditions, breakdownVariable, dependentVariable, and returnVariable node. Each condition node defines a clinical variable and the criteria for searching the values or reports stored for that variable within a SPIN database. In other words, the condition node tells us what data to search and what subset of that data is of interest. For example, a simple condition node can tell us to find all pathology reports with a diagnosis of prostate cancer, PSA values greater than 4, Hispanic patients, patients who have survived more than 5 years after being diagnosed with breast cancer, etc. We will discuss more complex search criteria later on.

Each condition variable is defined with the combination of a code and a coding system “name”, very much like an HL7 “CE” data value. The coding system “name” identifies the range of legal codes (and other) aspects of that coding system. Our current queries use LOINC codes for variable definitions, and at past meetings we have committed to using LOINC codes for most of this space. However, the query syntax described in this document is not tied to any specific coding system. No matter what the code and code system, each SPIN node must be able to map from that code into the appropriate, searchable data structures in its own database. Thus, SPIN provides a common “external” data view for query builders, but permits each SPIN node to have “internal” data structures of its own design.

Most of the SPIN content can be considered as a clinical variable from the point of view of the query syntax. These variables such as the variable “Surgical Pathology Tissue Dx”) map to a set of value tuples. Each tuple consists of a many “component” values, such as physiologic time (the specimen collection time for a specimen based observation) value, specimen tissue type, etc. For those of you familiar with HL7, you could picture this as a concatenation of many of the fields in the HL7 OBX and OBR segments. Searches based on these variables can test any or all of the components of the tuple. For example, we might want to limit the search to “Surgical Pathology Tissue Dx” reports whose physiologic time is before Jan 1, 1997, whose coded value equals “adenocarcinoma” and whose tissue type equals “prostate”. Our current query schema provides the following searchable components codedValue, numericValue, physiologicTime, interpretationCode, textReport, tissueType, bodySite, and collectionMethod. Our XML design strategy makes it simple to extend this list of searchable components to such items as reporting date-time as the committee sees fit. We wish to emphasize that this SPIN query syntax view of the world does not require that the underlying data base structure conform to this view. (Indeed ours does not)

Some query variables e.g., age, or gender, might be considered as constant attributes of the patient, in which case they might be considered 1-tuples with only one component, namely the value. We will identify such special variables by an attribute included in the table of SPIN searchable variables.

The general format of a condition node is:

<condition>

transformation

<variable…/>

pre-transformation criteria (optional)

/transformation

post-transformation criteria (optional)

</condition>

The syntax for the transformation and criteria nodes is defined later in this document.

3.3.1
Searching for Existence of Data

The simplest possible condition searches for the existence of values for the specified variable. That simple search does not care what values are recorded in the database, when the values were recorded, etc.

<condition>

<all>

<variable
code=”34574-4”

name=”Surgical Pathology Tissue Dx”

system=”LN”/>

</all>

</condition>

3.3.2
Post-Transformation Criteria

Our format for specifying criteria and expressions was inspired by the MathML standard. The query schema definition fully describes this syntax, but we will illustrate the key features in this document.

We start with a simple example. Suppose we are interested in only adenocarcinomas of the prostate. We amend our previous example as follows:

<condition>

<all>

<variable
code=”34574-4”

name=”Surgical Pathology Tissue Dx”

system=”LN”/>

</all>

<and>

<eq>
<variableComponent>tissueType</variableComponent>

<ccode
code=”C0033572”

name=”Prostate”

system=”UMLS”/>

<or>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C0001418”

name=”Adenocarcinoma”

system=”UMLS”/>

</eq>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C0007130”

name=”Adenocarcinoma, Mucinous”

system=”UMLS”/>

</eq>

</or>

</and>

</condition>

Here, we search for the coded value component of the “Surgical Pathology Tissue Dx” to be either “Adenocarcinoma ” or “Adenocarcinoma, Mucinous” and the specimen tissue type to be “Prostate”. Besides the equal operator eq, the propose syntax also supports comparison tags neq, lt, leq, gt, geq, contains, and matches (regular expression matching).

The conjunction tags and and or can be used to create very complex logical search criteria. For example, suppose we want to modify our previous search to return only those diagnoses before June 1, 2003 and we are only interested in diagnoses from specimens obtained via biopsy or excision. We amend our example as follows:

<condition>

<all>

<variable
code=”34574-4”

name=”Surgical Pathology Tissue Dx”

system=”LN”/>

</all>

<and>

<lt>
<variableComponent>physiologicTime</variableComponent>

<ctime>2003-06-01</ctime>

<eq>
<variableComponent>tissueType</variableComponent>

<ccode
code=”C0033572”

name=”Prostate”

system=”UMLS”/>

<or>

<eq>

<variableComponent>collectionMethod</variableComponent>

<ccode
code=”C0005558”

name=”Biopsy”

system=”UMLS”/>

</eq>

<eq>

<variableComponent>collectionMethod</variableComponent>

<ccode
code=”C0015252”

name=”Excision”

system=”UMLS”/>

</eq>

</or>

<or>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode
code=”C0001418”

name=”Adenocarcinoma”

system=”UMLS”/>

</eq>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode
code=”C0007130”

name=”Adenocarcinoma, Mucinous”

system=”UMLS”/>

</eq>

</or>

</and>

</condition>

Please note that we do permit more than two comparisons within a single and or or node.

3.3.3
Value Subset Transformations

Sometimes we want to limit (subset) our search to certain significant values stored for a variable, but we cannot express that as a component comparison. For example, we may be interested in the last recorded value for each patient or the highest recorded value for each patient. Our queries support the transformation operators first, last, max, and min for identifying those significant values. The following XML query tests to see if the patient’s last surgical pathology report diagnosis was a prostate cancer diagnosis and was before June 1, 2003.

<condition>

<last>

<variable
code=”34574-4”

name=”Surgical Pathology Tissue Dx”

system=”LN”/>

</last>

<and>

<eq>
<variableComponent>tissueType</variableComponent>

<ccode
code=”C0033572”

name=”Prostate”

system=”UMLS”/>

<lt>

<variableComponent>physiologicTime</variableComponent>

<ctime>2003-06-01</ctime>

</lt>

<or>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C0001418”

name=”Adenocarcinoma”

system=”UMLS”/>

</eq>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C0007130”

name=”Adenocarcinoma, Mucinous”

system=”UMLS”/>

</eq>

</or>

</and>

</condition>

We have changed our condition so that instead of searching all of the “Surgical Pathology Tissue Dx” values in the database, we search just the most recent (last) “Surgical Pathology Tissue Dx” values for each patient. Be aware that multiple reports may have the same physiologic time and/or value so the transformations first, last, max, and min may generate a list of values per patient rather than a single value per patient.

3.3.4
Pre-Transformation Criteria

The previous search condition may still not be what we want. Suppose we want to know if the last prostate cancer diagnosis was before June 1, 2003. We do not care if there were other cancer diagnoses after that. We do this by moving the comparisons that test for “prostate cancer diagnosis” so that they occur before the last transformation. That query is expressed as:

<condition>

<last>

<variable
code=”34574-4”

name=”Surgical Pathology Tissue Dx”

system=”LN”/>

<and>

<eq>
<variableComponent>tissueType</variableComponent>

<ccode
code=”C0033572”

name=”Prostate”

system=”UMLS”/>

<or>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode
code=”C0001418”

name=”Adenocarcinoma”

system=”UMLS”/>

</eq>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode
code=”C0007130”

name=”Adenocarcinoma, Mucinous”

system=”UMLS”/>

</eq>

</or>

</and>

</last>

<lt>

<variableComponent>physiologicTime</variableComponent>

<ctime>2003-06-01</ctime>

</lt>

</condition>

Now our query searches for the last of the prostate cancer diagnoses and then checks to see if the recorded physiologic time of that diagnosis was before June 1, 2003. This is quite different than our previous example.

3.3.5
Value Calculation Transformations

The transformations documented above reduce the set of observations/values to a smaller set of observations/values. The transformations count, mean, and sdev (for standard deviation) take the set of observations/values and reduce it to a single value. These transformations generate numeric values so only use the numericValue component can be evaluated in post-transformation criteria. Pre-transformation criteria can still check any variable component.

3.5
returnStatistics

The returnStatistics node defines the statistical data to be returned for those patients whom matched the criteria specified in the conditions node. The general format of the returnStatistics node is:

<returnStatistics>

<breakdownVariable>…</breakdownVariable>
(optional)

<dependentVariable>…</dependentVariable>
(optional)

<cells>

(only in query response)

</returnStatistics>

When one or more breakdownVariable nodes exist, statistics are returned in multiple cell nodes within the cells node. Each cell represents a single cell within the N-way cross tabulation table, where N is the number of breakdownVariable’s. Dependent variables statistics are aggregated and reported within each cell. If no breakdownVariable’s are specified, the cells node is returned with just a count and one statistics node for each dependent variable. Some examples will help demonstrate this format.

3.5.1
breakdownVariable

Each breakdownVariable specifies one dimension of the cross tabulation table. The general format of a breakdownVariable node is:

<breakdownVariable name=”myname” ordinal=”1”>

<variableComponent>…</variableComponent>

<condition>…</condition>

<breakdown>…</breakdown>

</breakdownVariable>

The query user can name the breakdown variable so that is appears as desired in the query response. That name is saved in the name attribute in the breakdownVariable node. Each breakdown variable is also assigned an integer value that represents is position in the N-way cross tabulation. This ordinal attribute value is always between 1 and N.

Each data value to be aggregated is defined by a variableComponent and condition node. The condition node specifies the database variable whose values are to be aggregated and any criteria for the specific values of interest. The variable component tells the query evaluator software which component (the value, physiologic time, abnormality status, specimen tissue type, etc.) of the variable values is to be aggregated.

Within the breakdown node, we define the statistical bins into which the data will be aggregated. The following examples illustrate this.

Let us do a breakdown of the patient’s last PSA values into the intervals 0.0-4.0, 4.1-10.0, 10.1-20.0, and >20.0 ng/ml. The query XML syntax for numeric intervals comes directly from the W3C MathML specification. Our query breakdownVariable node might appear as follows:

<breakdownVariable name=”Last PSA” ordinal=”1”>

<variableComponent>numericValue</variableComponent>

<condition>

<last>

<variable
code=”2857-1"

name="PSA SerPl Qn"

system=”LN”
/>

<last>

</condition>

<breakdown>

<cutpoint name=”Normal PSA”>

<interval closure=”closed-closed”>

<cn>0.0</cn>

<cn>4.0</cn>

</interval>

</cutpoint>

<cutpoint>

<interval closure=”open-closed”>

<cn>4.0</cn>

<cn>10.0</cn>

</interval>

</cutpoint>

<cutpoint>

<interval closure=”open-closed”>

<cn>10.0</cn>

<cn>20.0</cn>

</interval>

</cutpoint>

<cutpoint>

<interval closure=”open-closed”>

<cn>20.0</cn>

<maxvalue/>

</interval>

</cutpoint>

</breakdown>

</breakdownVariable>

We have specified aggregation by the numeric value component of the last PSA value. Last PSA values are aggregated into the intervals:

[0 - 4.0]

(4.0 - 10.0]

(10.0 - 20.0] and

>20.0.

There are not any recorded values <0, so every aggregated value appears in one of these intervals, with one exception. Patients with no recorded PSA values, but who match the query conditions, are aggregated into the “Missing Value” bin.

In addition to aggregating numeric value into intervals, we can create breakdowns for variables with coded results. The following example shows how to generate a breakdown by specimen tissue type for coded surgical pathology diagnoses.

<breakdownVariable name=”Pathology Report Tissue Type” ordinal=”2”>

<variableComponent>tissueType</variableComponent>

<condition>

<all>

<variable
code=”34574-4"

name="Surgical Pathology Tissue Dx"

system=”LN”
/>

<all>

</condition>

<breakdown max=”10”/>

</breakdownVariable>

When we ask for a breakdown of the code component, by default we get each code returned in a separate statistical bin. By specifying max=”10”, we limit the number of aggregated statistical bins to 10. If the actual data values would result in more than 10 bins being created, we create a single bin labeled “Miscellaneous”. We keep combing the lowest frequency bin into “Miscellaneous” until we achieve the bin limit of 10. The bin limit of 10 includes both the “Missing value” and “Miscellaneous” bins.

When the query has been evaluated, this node is returned with each of those bins explicitly defined, as follows:

<breakdownVariable name=”Pathology Report Tissue Type” ordinal=”2”>

<variableComponent>tissueType</variableComponent>

<condition>

<all>

<variable
code=”34574-4"

name="Surgical Pathology Tissue Dx"

system=”LN”
/>

<all>

</condition>

<breakdown max=”10”>

<cutpoint ordinal=”1” name=”Missing Value”/>

<cutpoint ordinal=”2” name=”Breast”>

<ccode code=”C0006141” name=”Breast” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”3” name=”Colon”>

<ccode code=”C0009368” name=”Colon” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”4” name=”Gallbladder”>

<ccode code=”C0016976” name=”Gallbladder” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”5” name=”Integumentary system”>

<ccode code=”C0037267” name=”Integumentary system” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”6” name=”lymph nodes”>

<ccode code=”C0024204” name=”lymph nodes” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”7” name=”Prostate”>

<ccode code=”C0033572” name=”Prostate” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”8” name=”Uterine cervix-Anatomy”>

<ccode code=”C0007874” name=”Uterine cervix-Anatomy” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”9” name=”Uterus”>

<ccode code=”C0042149” name=”Uterus” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”10” name=”Miscellaneous”/>

</breakdown>

</breakdownVariable>

The ordinal values are referenced in the returned statistical cell nodes, as you will see in subsequent examples.

One other cutpoint feature bears special mention. We permit more than one value to be aggregated into a single statistical bin. Suppose we want to combine the two bins “Uterus” and “Uterine cervix-Anatomy” (see example above) into a single statistical bin. We might generate the following query XML:

<breakdownVariable name=”Pathology Report Tissue Type” ordinal=”2”>

<variableComponent>tissueType</variableComponent>

<condition>

<all>

<variable
code=”34574-4"

name="Surgical Pathology Tissue Dx"

system=”LN”
/>

<all>

</condition>

<breakdown max=”10”>

<cutpoint name=”Uterus”>

<ccode
code=”C0007874”

name=”Uterine cervix-Anatomy”

system=”UMLS”/>

<ccode
code=”C0042149”

name=”Uterus”

system=”UMLS”/>

</cutpoint>

</breakdown>

</breakdownVariable>

We have specified that we want the two CUI codes listed above aggregated into a single statistical bin named “Uterus”. Note that we did not have to explicitly list all of the bins that will get created, just the ones we want combined. The technique can also be applied to intervals for numeric data.

3.5.2
dependentVariable

The dependentVariable syntax is a subset of the breakdownVariable syntax. The general format for a dependentVariable node is:

<dependentVariable name=”myname” ordinal=”3”>

<variableComponent>…</variableComponent>

<condition>…</condition>

</dependentVariable>

Note that no breakdown can be specified for a dependentVariable.

3.5.3
cells

The actual statistics are returned within the cells node. It consist of an overall count plus a list of the individual statistical cell nodes for the N-way cross tabulation. Empty cells are not returned in order to minimize the volume of returned data. The general format for the cells node is:

<cells>

<count>…</count>

<cell>…</cell>

(repeats as many times as needed)

</cells>

The count node contains the overall number of cases returned. Each cell represents a single statistical bin within the N-way cross tabulation. The cells node is only present in the query response.

3.5.3.1
cell

Each cell contains the total count of the number of cases that were categorized in that statistical cell, the “subscript” of the cell location in the N-way cross tabulation table, and the list of statistics computed for each dependent variable value within that statistical cell. The general format for a cell node is:

<cell>

<count>…</count>

<breakdownVariable>…</breakdownVariable>
(repeats as needed)

<dependentVariable>…</dependentVariable>
(repeats as needed)

</cell>

The count is the number of items falling into this bin. Each breakdownVariable is a single subscript into the N-way cross tabulation table. Each dependentVariable node contains the aggregated statistical information (count, sum, mean, standard deviation, max, min) for one dependent variable.

Let us make an example with two breakdown variables and a single dependent variable. The returnStatistics node might look as follows:

<returnStatistics>

 <breakdownVariable name=”Last PSA” ordinal=”1”>

<variableComponent>numericValue</variableComponent>

<condition>

<last>

<variable
code=”2857-1"

name="PSA SerPl Qn"

system=”LN”
/>

<last>

</condition>

<breakdown>

<cutpoint ordinal=”1” name=”Missing Value”/>

<cutpoint ordinal=”2” name=”Normal PSA”>

<interval closure=”closed-closed”>

<cn>0.0</cn>

<cn>4.0</cn>

</interval>

</cutpoint>

<cutpoint ordinal=”3” name=”(4.0 – 10.0]”>

<interval closure=”open-closed”>

<cn>4.0</cn>

<cn>10.0</cn>

</interval>

</cutpoint>

<cutpoint ordinal=”4” name=”(10.0 – 20.0]”>

<interval closure=”open-closed”>

<cn>10.0</cn>

<cn>20.0</cn>

</interval>

</cutpoint>

<cutpoint ordinal=”5” name=”>20.0”>

<interval closure=”open-closed”>

<cn>20.0</cn>

<maxvalue/>

</interval>

</cutpoint>

</breakdown>

 </breakdownVariable>

 <breakdownVariable name=”Pathology Report Tissue Type” ordinal=”2”>

<variableComponent>tissueType</variableComponent>

<condition>

<all>

<variable
code=”34574-4"

name="Surgical Pathology Tissue Dx"

system=”LN”
/>

<all>

</condition>

<breakdown max=”10”>

<cutpoint ordinal=”1” name=”Missing Value”/>

<cutpoint ordinal=”2” name=”Breast”>

<ccode code=”C0006141” name=”Breast” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”3” name=”Colon”>

<ccode code=”C0009368” name=”Colon” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”4” name=”Gallbladder”>

<ccode code=”C0016976” name=”Gallbladder” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”5” name=”Integumentary system”>

<ccode code=”C0037267” name=”Integumentary system” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”6” name=”Liver”>

<ccode code=”C0023884” name=”Liver” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”7” name=”lymph nodes”>

<ccode code=”C0024204” name=”lymph nodes” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”8” name=”Prostate”>

<ccode code=”C0033572” name=”Prostate” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”9” name=”Uterus”>

<ccode code=”C0042149” name=”Uterus” system=”UMLS”/>

<ccode code=”C0007874” name=”Uterine cervix-Anatomy” system=”UMLS”/>

</cutpoint>

<cutpoint ordinal=”10” name=”Miscellaneous”/>

</breakdown>

 </breakdownVariable>

 <dependentVariable ordinal=”3”>

<variableComponent>numericValue</variableComponent>

<condition>

<last>

<variable
code=”21841-2"

name="Age at Cancer Dx"

system=”LN”
/>

<last>

</condition>

 </dependentVariable>

 <cells>

<count>100</count>

<cell>

<count>3</count>

<breakdownVariable ordinal=”1” cutpoint=”1”/>

<breakdownVariable ordinal=”2” cutpoint=”1”/>

<dependentVariable ordinal=”3”

count=”2” sum=”140” max=”90” min=”50” sdev=”160”/>

</cell>

<cell>

<count>47</count>

<breakdownVariable ordinal=”1” cutpoint=”1”/>

<breakdownVariable ordinal=”2” cutpoint=”2”/>

<dependentVariable ordinal=”3”

count=”31” sum=”1752” max=”90” min=”10” sdev=”73.54”/>

</cell>

<cell>

<count>36</count>

<breakdownVariable ordinal=”1” cutpoint=”1”/>

<breakdownVariable ordinal=”2” cutpoint=”3”/>

<dependentVariable ordinal=”3”

count=”27” sum=”1930” max=”90” min=”10” sdev=”175.47”/>

</cell>

<cell>

<count>9</count>

<breakdownVariable ordinal=”1” cutpoint=”2”/>

<breakdownVariable ordinal=”2” cutpoint=”3”/>

<dependentVariable ordinal=”3”

count=”9” sum=”720” max=”80” min=”40” sdev=”25.54”/>

</cell>

<cell>

<count>5</count>

<breakdownVariable ordinal=”1” cutpoint=”4”/>

<breakdownVariable ordinal=”2” cutpoint=”3”/>

<dependentVariable ordinal=”3”

count=”5” sum=”341” max=”80” min=”40” sdev=”18.2”/>

</cell>

 </cells>

</returnStatistics>

The requested statistics are breakdowns by last PSA and pathology report tissue type. The dependent variable is “age at cancer diagnosis”. In this example, the last PSA value has been aggregated into 5 statistical bins:

1=Missing Value,

2=(0.0-4.0],

3=(4.0-10.0],

4=(10.0-20.0], and

5=>20.

The pathology tissue type has been aggregated into ten statistical bins:

1=Missing Value,

2=Breast,

3=Colon,

4=Gallbladder,

5=Integumentary system,

6=Liver,

7=lymph nodes,

8=Prostate,

9=Uterus, and

10=Miscellaneous.

Examine the last cell returned in the example. It says 5 of the patients matching the query conditions fell into breakdown bin 4 (10.0-20.0] for “last PSA” and breakdown bin 3 for tissue type “Colon”. The dependent variable information shows that the average age at cancer diagnosis for that group was 341/5 (68.2) years of age.

3.6
returnData

The returnData node defines the raw data to be returned for those cases that matched the criteria specified in the conditions node. In the query, the returnData node contains a list of returnVariable nodes, each specifying a single data item to be returned as raw data. In the query response (after query evaluation), the returnVariable node also contains a data node with the actual raw data values.

3.6.1
returnVariable

Each returnVariable node contains a single condition node, specifying the database variable and component to be returned as raw data. The condition node has been described in previous sections of this document.

3.6.2
data

The data node is a container for a list of dataRow nodes. Each dataRow node contains the raw data returned for a single case. The query schema defines the format of the dataRow node as “any”, meaning we cannot fix its format ahead of time. The format of each dataRow is determined by the list of returnVariable values that the query asked for.

4.0
ADDITIONAL QUERY EXAMPLES AND DESCRIPTIONS

4.1
Single Query Variable and Single Returned Variable

Our first query asks for a breakdown of “patient race” for all patients with a tumor of the “prostate”.

<conditions>

 <condition>

<all>

<variable
code=”34574-4”

name=”Surgical Pathology Tissue Dx”

system=”LN”/>

</all>

<and>

<eq>
<variableComponent>tissueType</variableComponent>

<ccode
code=”C0033572”

name=”Prostate”

system=”UMLS”/>

<or>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C0001418”

name=”Adenocarcinoma”

system=”UMLS”/>

</eq>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C0007130”

name=”Adenocarcinoma, Mucinous”

system=”UMLS”/>

</eq>

</or>

</and>

 </condition>

</conditions>

<returnStatistics>

<breakdownVariable name="Race">

<variableComponent>codedValue</variableComponent>

<condition>

<all>

<variable code="RACE"

system="SPIN_DEMOGRAPHICS"

name="SPIN Patient Race"/>

</all>

</condition>

</breakdownVariable>

</returnStatistics>

The conditions node defines the query used to identify the cases for which data will be returned. The returnStatistics node defines the data that is returned for those cases. In this example, we are looking for cancers of the prostate and returning a breakdown of all of those patients by race. Notice that the RACE variable is defined in much the same manner as any other database variable.

4.2
Compound Query Variables and Criteria

This conditions node specifies a search for patients with a cancer of the prostate or the liver within the last year and whose last PSA value is less than or equal to 4.0

<conditions>

 <AND>

<condition>

<all>

<variable
code=”34574-4”

name=”Surgical Pathology Tissue Dx”

system=”LN”/>

</all>

<and>

<or>

<eq>
<variableComponent>tissueType</variableComponent>

<ccode
code=”C0033572”

name=”Prostate”

system=”UMLS”/>

<eq>
<variableComponent>tissueType</variableComponent>

<ccode
code=”C0023884”

name=”Liver”

system=”UMLS”/>

</or>

<or>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C000148”

name=”Adenocarcinoma”

system=”UMLS”/>

</eq>

<eq>

<variableComponent>codedValue</variableComponent>

<ccode

code=”C0007130”

name=”Adenocarcinoma, Mucinous”

system=”UMLS”/>

</eq>

</or>

</and>

 </condition>

<condition>

<last>

<variable
code=”2857-1"

name="PSA SerPl Qn"

system=”LN”
/>

<last>

<le>

<variableComponent>numericValue</variableComponent>

<cn>4.0</cn>

</le>

</condition>
 </AND>

</conditions>

5.0
FURTHER DISCUSSION

We have not specified units for any numeric values (quantities) in the query XML.

Our current query server only returns aggregated statistical information. We have allocated and defined a format for returning raw data in our schema, but have no current experience at actually using that feature. Boston has such experience.

In order to have all SPIN query server nodes understand each other’s queries, we need to coordinate the names we use in the code system attribute. HL7 version 2 suggests using “LN” for LOINC, “I9” for ICD-9-CM, etc. We would suggest using HL7 vs. 2.x specified names for coding systems where they exist and defining explicitly listing the coding systems that SPIN will support across nodes.

Our tag names are open for discussion, but we think they have evolved to a fairly understandable form. We do think it is a good idea to use MathML tag names for the functions and concepts that it supports, because they come from a respected external source and have been tested by time.

We need to consider special functions for dates and times, such as functions to do date arithmetic and to convert time intervals into days, months, or years.

SPIN needs to decide on a common code set for patient gender, race, and marital status if we want our nodes to understand each other’s data. The HL7 version 2.x code tables might be a good starting point.

Any software that is used to create queries will need to know which components are available for which variables. For example, the “dateOfBirth” variable is just a date. The “Serum Potassium” variable may have the numericValue, physiologicTime, interpretationCode, textReport, tissueType, bodySite, and collectionMethod component values recorded. SPIN will want that information housed by, and distributable from, all of its “super nodes”.

